
Parliament

Zhenhua Lin

August 2010

1 Problem

Description New convocation of The Fool Land’s Parliament consists of N
delegates. According to the present regulation delegates should be divided into
disjoint groups of different sizes and every day each group has to send one
delegate to the conciliatory committee. The composition of the conciliatory
committee should be different each day. The Parliament works only while this
can be accomplished. You are to write a program that will determine how many
delegates should contain each group in order for Parliament to work as long as
possible. (source: Northeastern Europe 1998)

Input The input file contains a single integer N (5 <= N <= 1000 ).

Output Write to the output file the sizes of groups that allow the Parliament
to work for the maximal possible time. These sizes should be printed on a single
line in ascending order and should be separated by spaces.

Sample Input 7

Sample Output 3 4

2 Solution

Before introduce the solution, let us review an inequality and the multiplication
principle described below.

Theorem 1 (Inequality of Arithmetric and Geometric Means). For any list of
n nonnegative numbers x1, x2, . . . , xn, we have

x1x2 . . . xn≤
(
x1 + x2, . . . , xn

n

)n

and the equality holds if and only if x1 = x2 = . . . = xn.

1



Theorem 2 (Multiplication Principle). If a task consists of k different opera-
tions o1, o2, . . . , ok, and each operation oi can be done by mi ways. Then, there
are in total m1m2 . . .mk different ways to complete the task.

Back to our problem on hand. Assume that all delegates are separated into
k disjoint groups, each of which has xi delegates. Then, according to multiplica-
tion principle, there are M = x1x2 . . . xk different ways to compose a conciliatory
committee. According to the inequality of arithmetric and geometric means, M
reaches its maximal value when x1 = x2 = . . . = xk.

Unfortunately, for any xi and xj , if i 6= j, then xi 6= xj , and xi should be
an integer. However, the inequality of arithmetric and geometric means does
give us some intuition: M should be as larger as x1, x2, . . . , xk get close to each
other. The following lemmas confirms this intuition. Without loss of generality,
assume x1 < x2 < . . . < xk. Define the gap of two integers x1 and x2 as
the number of integers between them. Denote it by gap(x1, x2). For example,
gap(5, 8) = 2 since there are 6 and 7 between them. If gap(x1, x2) = 0, then we
say that x1 and x2 has no gap.

Lemma 1. Let t = x1+x2 when t, x1 and x2 are nonnegative integers and x1 6=
x2. x1x2 has the maximal value if and only if gap(x1, x2) ≤ 1. Particularly,
when t ≥ 5, the maximum of x1x2 is larger than t strictly.

Given a increasing sequence of integers Xk = x1, x2, . . . , xk, define the num-
ber of gaps in Xk as the number of pairs (xi,xi+1) which gap(xi, xi+1) > 0. For
example, sequence 1, 2, 5, 6, 8 has 2 gaps: one between 2 and 5, and the other
between 6 and 8.

Lemma 2. M reaches the maximal value if and only if there is at most one
gap in Xk and that gap is at most 1 if any.

The lemma above tells us that to make M as large as possible, the sequence
Xk should composed by a list of continous integers x+1, x+2, . . . , x+k, or two
segments of continous integers x + 1, x + 2, . . . , x + u and (x + u + 1) + 1, (x +
u + 1) + 2, . . . , (x + u + 1) + v where u + v = k.

Example N = 15, k = 3. Then M = 4 × 5 × 6 = 120. If k = 4, then
M = 2× 3× 6 = 144. For k = 5, M = 1× 2× 3× 4× 5 = 120.

One natural question is that, given k is fixed, how to look for valid sequence
Xk which maximize M? Well, by lemmas above, we can assume that Xk =
x+ 1, x+ 2, . . . , x+ u, (x+ u+ 1) + 1, (x+ u+ 1) + 2, . . . , (x+ u+ 1) + v where
u + v = k and v < k. So

(

u∑
i=1

x + i) + (

v∑
j=1

(x + u + 1) + j) = N

Or

x =
N

k
− v

k
− k + 1

2

2



by assuming N = mk + t where t < k,

x = m− t− v

k
− k + 1

2

Since x is integer and v < k, when k is odd, v = t. When k is even, v = t± k
2 ,

depending on if t is larger than half of k. By this way, for any N and valid k,
we compute the unique pair of x and v.

Lemma 3. Given N and k, the sequence Xk maximizing M is unique.

At this point, we can solve the problem as follows: For all possible k, compute
the x and v by above way. Then compute their corresponding M values, between
which we pick the largest one. The algorithm is inefficient since we involve
computing the pretty number of many factors (imagine 4×5× . . .×50 !!). Java
and some programming language do provide BigInteger class, but it is time
consuming.

The question following is, can we void manipulation on big integers? Yes.
To make it, we need some insightful thoughts. From the example given above,
it seems that M increases and x1 decreases when k get larger, but not too large.
At least, x1 = 1 is not expected and should be voided. In a word, we try to get
an x1 ≥ 2 as small as possible. The perfect value for x1 would be 2, of course.
However, not always we can make it. The good news is, x1 should be 2 or 3.

Lemma 4. Let Xk be the sequence maximinze M among all valid sequences.
Then x1 is 2 or 3.

Proof. We prove it by contradiction. Assume x1 > 3. Consider the case x1 = 4.
By Lemma 2, x2 = 5 or 6. If x2 = 5, we construct a new sequence X ′ by
replacing x2 with x′

1 = 2 and x′
2 = 3 and keeping others intacted. Note that

X ′ is a valid sequence, meaning that all elements in it are different and sum to
N . Then Xk

X′ = 5
6 . That’s Xk < X ′, which is a contradiction. If x2 = 6, we

construct a new valid X ′ by replacing x1 and x2 by 2,3 and 5. Since 2×3×5 =
30 > 4 × 6 = 24, it contradicts the optimality of Xk. Consider x1 > 4. In this
case, we construct the new valid X ′ by replacing x1 with two small factors y1
and y2 such that gap(y1, y2) ≤ 1. According to Lemma 3, X ′ > Xk, yet another
contradiction. So x1 ≤ 3. Obviously, if x1 = 1, we can easily construct an valid
X ′ > Xk.

Now, we narrow the search scope to those Xk starting with 2 or 3. Further-
more,

Lemma 5. Let X = x + 1, x + 2, . . . , x + u1, (x + u1 + 1) + 1, (x + u1 + 1) +
2, . . . , (x + u1 + 1) + v1 be the sequence maximizing M starting from 2 (x = 1)
and Y = y+1, y+2, . . . , y+u1, (y+u2+1)+1, (y+u2+1)+2, . . . , (y+u2+1)+v2
starting from 3 (y = 2), where u1, u2 ≥ 1 and v1, v2 ≥ 0. Let i be the length of
X and j be the length of Y . Then, i > j and v1 < v2.

3



Proof. Obviously, v1 < i.
∑

a∈X a = N ⇒ (2i + 3)2 = 8N − 8v1 + 9 and∑
a∈Y a = N ⇒ (2j + 5)2 = 8N − 8v2 + 25. Combining them, we have

(j − i + 1)(i + j + 4) = 2(v1 − v2) + 4

Assume i ≤ j. Then 2(v1− v2) + 4 ≥ i+ j + 4 ≥ 2i+ 4, or v1− v2 ≥ i. However,
since v1 < i and v2 ≥ 0, it’s impossible. So i > j and then v1 < v2.

The above lemma simply states that if we get two valid sequences, namely,
one starting from 2 with length i which maximize M when k = i, and the other
starting from 3 with length j which maximize M when k = j, and each of them
consists of two segments of continguous integers, then latter segment of the one
starting from 2 is short than that of the one starting from 3.

This fact leads to following important lemma.

Lemma 6. Let valid X = x + 1, x + 2, . . . , x + u, (x + u + 1) + 1, (x + u + 1) +
2, . . . , (x + u + 1) + v start from 3 (x = 2). Then X maximizes M among all
valid sequences if and only if v = 0 or v = 1.

Proof. In either case of v = 0 or v = 1, no valid sequence starting from 2 can
be constructed according Lemma 5. According to Lemma 4, X maximizes M .
Now assume X maximize M but v > 1. Then, we construct a new valid Y
by replacing (x + u + 1) + 2 with 2 and (x + u + 1). Since u > 0 and x = 2,
2(x + u + 1) > (x + u + 1) + 2. So Y > X. Contradiction.

Now we come to the crux of the problem. We construct a valid sequence
X starting from x + 1 where x = 1 by the following way: start from x + 1,
we keep adding x + 2, . . . , x + i until adding x + i + 1 will make the sum of
elements in X larger than N . Then, we increases each element by 1 in the order
of x + i, x + i − 1, . . . , x + 1 and repeat the process until it sums to N . The
sequence we finally get is the answer.

The next step is to prove the algorithm is correct. Given above lemmas, it’s
an easy task.

Proof. Firstly, m ≤ k + 1. Otherwise, the first while loop won’t terminate. So
the body of second while loop will be executed at most k + 1 times. If m = k
or m = k + 1, then X starts from 3 with the second segment of length 0 or 1,
respectively. According to Lemma 6, X is optimal. If m = 0, we are unable to
construct a sequence Y such that Y starts from 3 and will the second segment
of length at most 1. If 0 < m < k, X has second segment of length at least 1.
According to Lemma 5, we also cann’t construct Y maximing M and starting
from 3 with second segment of length at most 1. Combining Lemma 4, the X
is optimal.

4



1: S ← 0
2: k ← 0
3: array X stores the sequence
4: while S + (k + 2) ≤ N do
5: X[k + 1]← k + 2
6: k ← k + 1
7: S ← S + X[k]
8: end while
9: j ← k

10: m← N − S
11: while m > 0 do
12: X[j]← X[j] + 1
13: m← m− 1
14: j ← j − 1
15: if j < 1 then
16: j = k
17: end if
18: end while

5


